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DIFFERENTIAL CROSS SECTION AND RELATED INTEGRALS

FOR THE MOLIERE POTENTIAL

INTRODUCTION
At the core of all radiation-damage and ion-range calculations for heavy-ion beams

incident on bulk materials is the choice of potential that represents the interaction between the
incoming ions and the lattice atoms. These potentials range from ones specifically tailored to an
atom-ion pair to less accurate forms that can be used, with simply defined parameters, for any
interacting pair (1]. Most of the forms in this latter category consist of some approximation to
the Firsov form of the two-body Thomas-Fermi interaction.

The Thomas-Fermi potential, for an isolated atom of charge Z2 e, is usually written

V(r) = Z2e XT(r/a),
r

where XT(X) is the screening factor for the Coulomb potential and where the screening radius
is

a = 2 137 | 2 Z-1/ 3 = 0.8853 aZ I1 /3
32 me2 

The function XT(X) is available in tabular form [la]. Firsov was able to justify the adaptation
of the Thomas-Fermi potential as a two-body interaction; specifically, if the quantities Z, and
Z2 are the atomic numbers of the incoming ion and lattice atom respectively, we write

V(r)= Z1Z 2 xTr/a,

r

where we adopt the screening radius of Lindhard, Nielsen, and Scharff (LNS) [2] given by

a = 0.8853 aZ- 1 3 ,

Z = 2/3 + Z22I313)2

In addition to the Thomas-Fermi screening function being available in tabular form, it has
been approximated by a large variety of analytical forms. Of these forms, we are particularly
interested in the Moliere form [lb), given by

XM(X) = 0.35 e-0. 3x + 0.55 e-1. 2x + 0.10 e-6x,

where x = rna. The Molibre screening factor falls off exponentially with large separations,
whereas the Thomas-Fermi screening factor falls off as x-3 . It has been shown however that
the Thomas-Fermi interaction falls off too slowly and that the Moliere potential is a more real-
istic interaction for large separations [lb,3]. The Moliere interaction is, for example, used by

Manuscript submitted January 27, 1978.
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Robinson and Torrens in their computer simulation studies of radiation damage [41. In Fig. 1
we show the ratio of the Moliere and Thomas-Fermi screening factors as a function of separa-
tion. The agreement is quite good out to the region where the exponential decay of the
Moliere screening factor is dominant. In this region, as we said, the Molibre interaction is
more realistic.

( 1.02 1 ail

In
v 1.02

0 0.99 \ 

012 0.3 0.5 0.7 2 3 5 7
REDUCED SEPARATION x

Fig. I - Ratio of Moli're and Thomas-Fermi screening
factors as a function of dimensionless separation

Although computer simulation calculations use an interaction directly, Boltzmann [51 and
Lindhard [2,61 transport calculations use the scattering cross section associated with the poten-
tial. With the definitions

p = impact parameter,
E= incident ion energy,

and

El A2 E = center of mass energy,
AlI + A 2

where Al and A2 are the masses in atomic units of the incoming ion and lattice atom respec-
tively, the scattering angle is [71

0 = 7r- 2p fd 
rmin r2[1 - V(r)/EI - p2 /r2]1/2 (1)

where rmin is the largest zero of the radical in the integrand. We also make use of another vari-
able, the energy transferred in a collision,

T = Tm sin2 0/2,

where

4 AIA 2

Tm = VE (AI + A2)2

is the maximum kinetically allowed energy transfer. Corresponding to this maximum energy
transfer is the minimum energy that can be carried away by the incident ion, given by
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E Elf I ~A I -A 21 2E~i, =Elp= At-+A2 I E.

Much of the work of Lindhard and his coworkers is couched in terms of the dimensionless vari-
ables

E = EIEL,

Z 1 Z 2 e2 A I + A 2
EL a=1a A2

and

t = E2 T/Tm = E2 sin2 0/2.

In terms of these various definitions, the differential cross section is

do=-2irpdp -2 rp(t) dp(t) dt.

LNS use the notation

do or a 2 f t l1/2A d
2 t312

so that

f ft1/2)= 4 t32p(t) dp( ) (2)
f a 2

t
1
p) dt

Out of a desire to create a simple, universal cross section, LNS now make two approxima-
tions to obtain f (t"' 2 ): they replace Eq. (1) by the momentum approximation [81 to the
scattering angle, so that

0 =-plE f dr I dV(r) (1 - p2/r2) 12 3)
P r ~dr

and they make the substitution

t = I e 1- C2 sin2 0/2.

By combining these approximations, we find that we can write

= - I (p/a) dx x 1 _ p \2 1|2 d 1 ()l2 l /a) d I' - x2 dx x X J
Equation (4) provides a functional relationship between the impact parameter and the reduced
energy transfer that can be used to solve Eq. (2) for f(t1/2 ). The advantage of the LNS
method is that the differential cross section depends on only one variable; in other words, the
variable t in Eq. (4) would ordinarily depend on both p/a and e, but in the LNS approximation
it depends only on p/a.

Before we continue, one other point should be made. With any infinite range potential,
the total cross section diverges as the energy transfer approaches zero. To bypass this difficulty,
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we cut off the allowed energy transfer at a minimum value T1. The cutoff value will be of the
order of 20 eV, dependent on the target material, and can be thought of as related to the
minimum energy required to displace an atom from its lattice site. Collisions in which an
energy of less than T, would be transferred to a lattice atom are not allowed. Roughly the same
approach is taken in computer simulation calculations, where there is a maximum allowed
impact parameter.

Given these considerations, the total (macroscopic) cross section is

No-(E) = N do- = N7ra2 f d1 q-2 f('q),
1N0

where N is the number density of lattice atoms and

[ E T, 1l/2

'q° I-I
Following LNS, we can write

N S(E) = Nira2 yEL f d'q f(7)

for the stopping cross section for elastic collisions and

N W(E) = Nrra2 E | f d7) i1
2 f(,q)

for the square fluctuation in energy loss. The quantities f, S. and W are provided by LNS in
tabular form [2]. Manning has generated a more complete table [9]. Winterbon, Sigmund, and
Sanders (WSS) [61 have created a more convenient fit to the LNS f (r,) in the form

f W (^' = A- x 3 [1 + (2 X 4 I3)2/31 , X = 1.309.

Relatively convenient expressions can be found for o-(E), S(E), and W(E) [10,111.

It is our intention in the rest of this report to find the f(-r) corresponding to the Moliere
potential and to develop convenient forms for f o-, S, and W.

EXACT RESULTS

The integral that arises in Eq. (3) with the Moliere potential is evaluated by Lehmann and
Leibfried [8], with the result

3
0 = e-l bj1XjK 1(Xp/a),

i=1

where K1 is the modified Bessel function,

XA =0.3, 1.2, 6, i =1, 2, 3,

and

bi = 0.35, 0.55, 0.10, i = 1, 2, 3.
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Consequently we have

i3
7= t'12 = biXiKI(Xip/a). (5)

2 i

In terms of the variable 7, Eq. (2) becomes

fM(n) = 2 q 
2
p/a - (6)dp/a(6

and we find

d -q 3 X K1 (Xip/a) + K
dp/ =- 2 z 2 [ A /p + KO(Xipa) 1 . (7)

By using Eqs. (5), (6), and (7), we can form a table expressing the relationships between
f Oq), q and p/a.

For convenience let us make the definitions

No-M(E) = N7Ta2 [CM(- 7 ) _ CM(E)], (8)

( =M(X) f d-q tq2 fM(77),
x

N SM(E) = N ;T a2 EL ISM(E) - SM(m)], (9)
E

SM(x) = f dq1 fM('r),

0

N WM(E) = N 7r a2 I E|e2 -1M(2 M) (10)

and
x

tM(X)= f drq n2 fM(7,)
0

The first function is trivial to evaluate, so that

(?M(n) = [p(,)/aJ2.
The second quantity is

Sk(x) = - f dq q I bX XK I( Jq)J.
p(x)/a 1=1

This integral can be evaluated exactly [12], yielding

SM() = 3, bj2 S1
2 |K 2(Si) + 2 Ko(s1 )KI(s1 ) - K?2(si)

4=1 ~ .b2ji'Si sK~,K~,

IJ1 X- [K°(s) K1(si) -siKO(si)KI(s

where sij = Xjjp/a. The quantity 6iM(x) apparently cannot be evaluated in closed form.
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Figure 1 indicates the deviations of the Moliere potential from the Thomas-Fermi poten-
tial. Specifically we note the series of wiggles in the ratio. These are no doubt due to the
fitting of the Moliere form to the Thomas-Fermi potential; they have no physical significance.
In Fig. 2 we reproduce that curve, with the addition of a plot of the ratio of the Molibre and
Thomas-Fermi cross sections, drawn as a function of p/a. We see that the wiggles in the
Moliere potential, relative to the Thomas-Fermi potential, are reproduced, and indeed
magnified, in the corresponding cross sections. In part this magnification is probably due to the
use of the momentum approximation to calculate the scattering angle. Figure 3 provides plots
of the Moliere and Thomas-Fermi f(q) functions; also shown is the WSS fit to the Thomas-
Fermi f (X) function.
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SIMPLE FIT FOR fm(q')

It is time consuming to evaluate the exact expression (Eqs. (5), (6), and (7)) for fm(-q);
in actual use it is convenient to have some simple form to represent the cross section.. We
have found that

f (q) = f I () = a 0vqIn o) + a 1r) + a 2q)2 + a 3 q 
3 , q < q =0.06,

= h~q) = 61 + q/2 7 

fits the exact fm 6 q) to better than 6% for all values of rq. The values of the parameters in these
equations are

a, = -20.45, -71, 422.097, -1429.70, i = 0, 1, 2, 3,
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Fig. 3 - Comparison of the Moli'ere, Thomas-Fermi,
and WSS scattering functions

and

,6i = 0.007, 0.0387, 0.826), i = 1, 2, 3.

In particular, a 2 and a3 were chosen so that the fits in the two regions had equal values and
derivatives at a7 = 7) *.

The various integrals of f (-), Eqs. (8), (9), and (10), can be evaluated in closed form.
For r < 7 *we have

(1(7) = 148.298 - 1 a0 In2 q + a, ln -q + a27) + 2a 37)2J.

SI 60) = 1 a j0l2 In 1-j +- I a 17)2+ 1 a2 7)3 + -a a3 714,

and

I (7) = 71 4a In 71- + | a1 7)4 + 1 a2 7)5 + - a3 7)6

and for q1 > ) *we have

C2(71)= [1(23k - 2 (1,332 - 2132)1P2 (7q) + 4131j132/

+ (12-2231133) [PI(7) ) -2 In 71))J/(4 322),

00 0.059298 + 1 (4,BI - 133)P 2(7n) + PI(7' ))J
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and

@2(7)) = 0.079916 + 4 1{2 + (4p1 - 213)7) + (X32 - 12 - 2)31 3)P1(7 )

+ I(2131(132 - 212) - 13 (32 - 3P2) IP2(6) I}

where we write

go (32 - 492) 12

Pl(7q) = In (12 + 73 + 7)2),

and

P2(71)= Po-' In [133 + 2-q - P0)/(1 3 + 27) + PJ)I.

P-1.06l i l l l 

1 02 0 Fig. 4 - Comparison of present work with

z exact Moliere results: ratio of scattering ker-

-i

0.98 | /- nels as a function of reduced energy transfer

U-
102

_Q094 
P4 10-4 10-3 1o-2 lo-' I IO 102 103

cr ~~REDUCED ENERGY TRANSFER, 0~/2

Figure 4 presents a comparison of our fit (f I and f2) with the exact expression fm(ow).
We see that the error in f (-q) is never more than 6%. Consequently the errors in A, 8, and lb
will be less than 6%. Because we are now prescribing an f (x ), we are interested in what
screening factor corresponds to this new f (-). Within the spirit of the LNS approximations,
embodied in Eq. (4), we can write [1c, 13, 141

X(X) = 4X I dq Iq2_X 1 (q)

1T o dq 

where x and %x are related byx

X2= 00 d2 1-2 f (3 )

7X

In Fig. 5 we compare as a function of x the xfi obtained in this manner from our new f (q)
with the exact form XM(x). We see that x(x) differs from Xm(x) by less than 6%. We also
show the error in f (c ) again, this time as a function of q = p ( o) f a.
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Fig. 5 - Comparison of present work with exact Moliere results:
ratios of scattering kernals and screening functions

CONCLUSIONS

We have created a simple differential cross section that reproduces the cross section
derived from the Moliere potential by the LNS method. The expressions for this f(q) and the
related integrals for total cross section, stopping power, and fluctuation in energy loss involve
only simple powers and logarithms. We suggest the use of this version of the Moliere cross
section as a universal cross section, to replace the LNS and WSS forms.
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